Backstepping Controller Design to Track Maximum Power in Photovoltaic Systems
نویسندگان
چکیده
This work presents a new control method to track the maximum power point of a grid-connected photovoltaic (PV) system. A backstepping controller is designed to be applied to a buck-boost DC-DC converter in order to achieve an optimal PV array output voltage. This nonlinear control is based on Lyapunov functions assuring the local stability of the system. Control reference voltages are initially estimated by a regression plane, avoiding local maximum and adjusted with a modified perturb and observe method (P&O). Thus, the maximum power extraction of the generating system is guaranteed. Finally, a DC-AC converter is controlled to supply AC current in the point of common coupling (PCC) of the electrical network. The performance of the developed system has been analyzed by means a simulation platform in Matlab/Simulink helped by SymPowerSystem Blockset. Results testify the validity of the designed control method.
منابع مشابه
Design of Maximum Power Point Tracking in Solar Array Systems Using Fuzzy Controllers
In recent year's renewable energy sources have become a useful alternative for the power generation. The power of photovoltaic is nonlinear function of its voltage and current. It is necessary to maintain the operation point of photovoltaic in order to get the maximum power point (MPP) in various solar intensity. Fuzzy logic controller has advantage in handling non-linear system. Maximum power ...
متن کاملMaximum Power Point Tracking of the Photovoltaic System Based on Adaptive Fuzzy-Neural Method
The aim of this paper was to present an optimized method in order to use maximum capacity of the photovoltaic panels. In this regard, we presented a method for the maximum power point tracking in the photovoltaic systems by using the neural networks and adaptive controller. In the proposed system, we estimated an error by using neural network. If this error is lower than the allowable systems e...
متن کاملIncreasing the Efficiency of Photovoltaic Systems by Using Maximum Power Point Tracking (MPPT)
Using Photovoltaic systems is gradually expanded by increasing energy demand. Abundance and availability of this energy, has turned to one of the most important sources of renewable energy. Unfortunately, photovoltaic systems have two big problems: first, those have very low energy conversion efficiency (in act between 12 and 42 percent under certain circumstances). Second, the power produced b...
متن کاملEfficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults
This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...
متن کاملMaximum Power Point Tracker for Photovoltaic Systems Based on Moth-Flame Optimization Considering Partial Shading Conditions
The performance of photovoltaic (PV) systems is highly dependent on environmental conditions. Due to probable changes in environmental conditions, the real-time control of PV systems is essential for exploiting their maximum possible power. This paper proposes a new method to track the maximum power point of PV systems using the moth-flame optimization algorithm. In this method, the PV DC-DC co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014